
Chapter X

5

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

w
w

w
.alatechsource.org

N
o

vem
b

er/D
ecem

b
er 2009

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

Chapter 1

Abstract

In recent years, companies involved with both open
source and proprietary integrated library systems (ILSs)
have made a concerted effort to increase the openness—
that is, the degree of flexibility and interoperability—
that their products offer to librarians and programmers.
This chapter of “Opening Up Library Systems through
Web Services and SOA: Hype or Reality” explores this
dynamic in the current ILS market. By taking a general
look at what characteristics and functionality librar-
ians seek in their software and defining key terms, this
chapter sets the stage for an in-depth exploration of the
modern ILS trend towards APIs, Web services, and the
service-oriented architecture.

In the current phase of library automation, we’ve become
inundated with the language of openness. Open source
integrated library systems (ILSs) have emerged, prom-

ising to give libraries more control over their software
than has been possible with proprietary, closed-source
products. Companies that produce and provide service for
proprietary products have redoubled their efforts to offer
more flexibility, openness, and interoperability through
Web services and other application programming inter-
faces (APIs). A new front has developed in the competi-
tion among library automation alternative vendors, who
are racing to open up software and allow libraries more
access to their data and internal functionality. This new
emphasis on openness can be a great benefit to librar-
ies to the extent it that it actually offers new capabilities
otherwise not available. Still, as implied by the title of
this issue, it’s often difficult to distinguish products that
fully embrace openness from those where the claims don’t
quite match reality.

In today’s environment, systems that are perceived
as being “closed” have diminished appeal. It sure sounds
better to characterize an automation system as “open”
and flexible, but what do the terms really mean? We will
explore some of the techniques that provide increased
access to data and internal functionality, focusing espe-
cially on Web services and other application program-
ming interfaces.

Many libraries might say that they do not want a
“black box” system that restricts users to the functionality
in the interfaces provided by the vendor, with no access
to the internals of the system. Yet many libraries need a
turnkey system that helps them carry out their work with-
out the need for any local programming or intervention.
We should emphasize that APIs offer additional opportu-
nities for those that want to do more with their software,
but do not impose any technical requirements for libraries
that choose not to use them.

When it comes to the purveyors of proprietary soft-
ware, claims of openness are also everywhere. The empha-
sis on openness may have been accelerated by the open
source movement, but it has been a steady theme for many
years. Press releases and product literature gush with the
language of openness. The means to this openness are
the adherence to standards and Web services and other
application programming interfaces.

This report aims to take a close look at the major
ILS products on the market and describe the approach
that each offers in delivering open access to its data and
functionality. Of particular interest are the APIs that each
system offers to the libraries using its product. We will
describe and evaluate their scope and comprehensiveness
and observe the extent to which each product offers these
APIs through Web services, the preferred approach in the
current phase of information technologies.

Introduction

6

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
w

w
w

.a
la

te
ch

so
ur

ce
.o

rg

N
o

ve
m

b
er

/D
ec

em
b

er
 2

00
9

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

Libraries have varying expectations when it comes
to what they want from their automation products. Many
simply want the system to function as documented, using
the interfaces and reports delivered with the system. Some
ILS products target libraries that expect basic functional-
ity without the expectation of local programming. The
products in this category serve a vital role in the library
automation arena. Libraries expecting to work with their
systems through local programming should be clear on
which products offer this capability and which do not.

Scope

This report focuses on integrated library systems, the
core business application used to automate the work that
takes place in libraries and to provide access to their col-
lections and services. Libraries make use of many differ-
ent software components, such as discovery interfaces,
link resolvers, federated search tools, digital collection
management systems, and institutional repository plat-
forms. Although many of the same questions apply to
other genres of software, those lie outside the scope of
this report.

We further narrow the scope to the ILS products
widely used in the United States by the kinds of libraries
likely to have an interest in extensible systems. The types
of libraries in this category would include large research
libraries, municipal and large public library systems,
and national libraries. The specific systems examined
will include those from Ex Libris, Innovative Interfaces,
SirsiDynix, VTLS, Polaris, and The Library Corporation,
as well as Koha and Evergreen, which are widely adopted
open source ILS products. Even though Talis does not
market its ILS in the United States, it has been an active
proponent of this approach and warrants inclusion.

Intended Audience of This Report

This report aims to provide useful information to anyone
involved with automation products in a library context,
especially those involved with defining or implementing
technology strategies. Library administrators will find
information, presented in clear, nontechnical language,
that will help them understand some of the options to
extend and enhance their automation environment. These
extensions relate to extracting and manipulating data in
ways that will support management decisions, allowing
the library’s computer systems to work together more
efficiently and to better connect with the information sys-
tems of the broader organization. For library administra-
tors and other nontechnical professionals, this report will
provide information and context to help understand the
claims and counterclaims of open source and proprietary
software proponents.

Developers and other technical staff may already
be familiar with many of the concepts explained in this
report, but should find the examinations of how different
APIs have been implemented in particular products to
be of interest. Systems librarians, Web developers, and
others ready to extend their activities to include program-
ming with the library’s ILS or other key infrastructure
components will learn basic concepts and the realm of
tasks that can be accomplished using these interfaces.
Developers outside the library industry who may be
involved with libraries will find important information on
the integration capabilities offered by the major library
automation products.

Librarians and other library workers not directly
involved with technology will benefit from understanding
the concepts involved since this is an area of technology
that has a direct impact on the information environment
of the library and the information and functionality that
supports their work.

The ability to work with library automation soft-
ware through an API benefits some types of libraries
more than others. Those involved with larger and more
complex library organizations will have more opportuni-
ties to take advantage of the APIs and other integration
technologies covered in this report. The key target orga-
nizations include academic libraries of all sizes, large and
medium-sized public libraries, special libraries supporting
large organizations, and national libraries. These libraries
generally operate a variety of information systems within
their enterprise networks, with interdependencies that
often cannot be realized by out-of-the-box functionality.
The libraries require custom programming to get what
they need out of their software. Smaller libraries tend to
use automation products as delivered by their develop-
ers, increasingly as a hosted service, and may have fewer
needs that require programmatically extending the func-
tionality. Smaller libraries are also less likely to have the
technical staff to implement these capabilities.

Why Should Libraries Care
about Application Programming
Interfaces?

The integrated library system, or ILS, provides the essen-
tial automation infrastructure for a modern library and
represents one of the largest technology-related invest-
ments that a modern library makes. Libraries select from
a variety of major products on the market, including both
proprietary and open source flavors.

Each library brings a unique set of expectations and
requirements to the table as it implements its ILS. Through
a careful selection process, the library will identify the
system best suited to its fundamental requirements. Yet
no prepackaged automation system will completely satisfy

7

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

w
w

w
.alatechsource.org

N
o

vem
b

er/D
ecem

b
er 2009

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

all of the nuanced needs of every library. Equipped with an
API, libraries with their own programmers have the option
of creating functionality that fills in the gaps between the
system as delivered and their specialized requirements.

Library automation systems increasingly operate
within a broader context of information systems. Espe-
cially in larger organizations, the ILS needs to communi-
cate with a variety of other business applications.

Any ILS comes as a complete package designed to
present a broad set of features and functionality through
the user interfaces delivered with the system. These user
interfaces, whether presented through a Web browser
or implemented through a graphical Windows, Java, or
Macintosh interface, allow human users to interact with
the software, searching for resources, performing trans-
actions, extracting reports, or carrying out other busi-
ness functions. In selecting a system, a library measures
the completeness of that system in terms of what can be
accomplished through these user interfaces.

The user interfaces provided with the ILS are the
products of the people who develop the system. While
some aspects of the user interface can be adjusted by the
configuration options selected by the library, the basic
functional capabilities cannot be altered except by those
involved in the development of the software.

While many libraries find the functionality delivered
with the ILS to meet their automation needs, others benefit
from the ability to perform tasks beyond that of the deliv-
ered software. A robust and well-documented set of APIs
empower the library to perform tasks with the ILS and the
data it manages that go beyond the delivered system.

APIs associated with an integrated library system
enable interoperability, make its functionality extensible,
and empower the library to be more independent of the
organization that created the software:

 Interoperability. For many libraries, a key concern
lies in their ability to make the ILS communicate
effectively with other computer systems. The more
that a library exists within an organization that
makes use of multiple information systems, the
more that it needs an ILS that can interact with
those other systems. In such a context, an ILS
that cannot interoperate with other systems func-
tions as an isolated silo that may not support the
library’s organizational and business needs. To
a large degree, interoperability can be achieved
through adherence to applicable national and
international standards. Yet standards do not nec-
essarily address every possible aspect of the way
that a library might need its ILS to interact with
other business or information systems. APIs pick
up where standards leave off, allowing libraries to
create interoperability that cannot be achieved in
other ways.

 Extensible. An ILS embodies a specific set of fea-
tures and functions that are needed to automate
the internal operations of a library and provide its
users with access to its collections and services.
The set of features in a given ILS will continue
to evolve over time in response to the ongoing
enhancement requests that emerge from the
libraries that use the software and from the devel-
opment agenda of its developers. Many librar-
ies have specific automation needs not fulfilled
by their ILS. These needs may not be shared by
other libraries that use the software, making them
unlikely candidates for the normal enhancement
process. An extensible system allows the ILS to
enhance its functionality without the intervention
of the programmers that created it. APIs provide
one of the most important vehicles for extending
an ILS according to the needs of a given library.

 Vendor independence. The presence of a robust
API can help reduce a library’s dependence on the
organization that created and supports the ILS.
With a closed system, only the vendor can make
changes to the system to extend its functionality.
An API provides a library with the ability to create
customized functionality without the intervention
of its developers. This capability enables the library
to have more flexibility; it is less hampered by an
unresponsive vendor and can accomplish tasks
with its own staff that otherwise might require
paid custom programming from the vendor.

The degree of independence gained by the
ability to take advantage of an API isn’t absolute.
The library continues to be dependent on the
product’s developers to maintain the product. If
the company goes out of business or withdraws
the product, the programming invested may or
may not be transferable to another ILS.

Possibilities Abound

To help readers visualize why it’s important for an ILS to
offer an API, some of the tasks that can be accomplished
might include:

 OPAC replacement or enhancement. One of the
ma -jor trends today involves the transition from
traditional online catalogs to new-generation dis-
covery interfaces. These new products often come
from sources other than the developer of the ILS,
but thoroughly rely on the ability to extract data
from and communicate in real time with the ILS.
It’s through APIs that it becomes possible for a
third-party discovery interface to work seamlessly
with the ILS.

8

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
w

w
w

.a
la

te
ch

so
ur

ce
.o

rg

N
o

ve
m

b
er

/D
ec

em
b

er
 2

00
9

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

Many libraries need to enhance their existing
online catalog in ways beyond the standard
configurations that are offered. The display of
book jackets, summaries, or reviews can be layered
onto catalog pages using an API.

It’s of increasing interest to embed library
content and services in external Web pages and
portals. A flexible set of APIs in the ILS, especially
in the form of Web services, will help support
these capabilities.

 Connectivity with self-check and automated mate-
rials handling equipment. The ability to take
advantage of self-service and other external auto-
mation systems may be enhanced through APIs.
Much of this connectivity is addressed in SIP2
and NCIP protocols, but libraries may also be able
to enable additional efficiencies if they are able to
supplement these protocols through other APIs.

 Single sign-on and authentication services. A key
problem that many libraries face involves how
their users sign in to their various applications.
Given the multitude of systems, it’s important to
have some means of consolidating the function
that controls how users sign in. It may involve
configuring the ILS to rely on an external authen-
tication service, or it may mean the ILS function-
ing as an authentication service for external appli-
cation. Either way, the ILS must support the APIs
associated with authentication, such as LDAP,
ActiveDirectory, Kerberos, or Athens.

 Financial system integration. Many libraries need
to be able to exchange financial information with
other business systems in their institution. Pro-
curement and fund management tasks that take
place in the acquisitions module of the ILS often
need to be transferred to an enterprise resource
planning (ERP) program (a genre of software that
large organizations use to manage their financial
data across different units) or other accounting
systems for payment. In academic libraries, fees
incurred in the library may need to be transferred
to a bursar’s office for collection through the stu-
dent’s institutional account. Some libraries may
want to offer online payments though through
their own or though their institution’s site using
third-party e-commerce products.

 Detailed reporting. Although all ILS products come
with reporting modules that generally include the
ability to produce customized reports, they may
not have the ability to address all aspects of data
managed within the ILS. Many libraries are able
to use an API to extract data in ways not possible
through standard reports.

These tasks represent only a few of the possibilities.
Equipped with a well-developed API, a library should be
able to respond to a wide variety of needs that arise involv-
ing some aspect of information managed within its ILS.

Basic Concepts

This report focuses on techniques for providing librar-
ies more open access to their core automation systems.
The key approach that we will explore is the application
programming interface, or API. In today’s technology
environment, the preferred implementation of an API is
through Web services, which takes advantage of the pro-
tocols, structures, and technologies that support the Web.
Systems formed entirely out of Web services and that fol-
low a particular set of organizational principles can be
said to follow a service-oriented architecture, or SOA.

One of the most important concepts to understand
about an API is that it involves computer-to-computer
interactions. Not to be confused with the user interface
offered for humans, the applications programming inter-
face involves allowing one computer system to interact
with other computer systems. As an application program-
ming interface, it involves programmers. Those libraries
lacking technical staff capable of at least some software
programming will not work with the APIs directly. Libraries
without programming staff may benefit indirectly through
capabilities executed on their behalf by third parties.

Some systems may have internal APIs designed for
the developers of the system, but these APIs may not be
packaged in a way that makes them accessible to the per-
sonnel in the libraries that use the system. The presence
of APIs within the internal system framework designed
for use by the software engineers that program the appli-
cation itself may not be palatable platforms that will help
the personnel in the libraries that use the software cus-
tomize it and maximize its capability. While the use of
internal APIs reflects modern software design, we’re pri-
marily concerned with APIs designed to be used by the
libraries that implement the software. It’s these customer-
facing APIs that directly benefit libraries using the soft-
ware, more so than the APIs that are geared more for use
by those involved with developing the application itself.

A customer-facing API needs to be largely abstract
from the internal workings of the underlying system. It
should offer high-level operations that do not require
detailed knowledge of the internal programming conven-
tions within the ILS. The API should be independent of
any given programming language or operating system.
Most importantly, it must come with detailed documen-
tation that provides the library programmer with ade-
quate information on the requests supported by the API,
the protocols and syntax involved, and the form of the
expected response.

9

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

w
w

w
.alatechsource.org

N
o

vem
b

er/D
ecem

b
er 2009

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

API Implementation Models

As we approach the realm of application programming
interfaces, let’s think of applications that lack this archi-
tecture and step our way through progressive levels of
support. Figure 1 illustrates the most closed approach to
programming. This type of application is completely self-
enclosed. The software has exclusive access to any of the
data involved. Whether the databases used are proprietary
or based on standard relational database management sys-
tems (RDBMS) products, the customer has no access to
them other than through the interfaces delivered as part
of the software application. All of the functions of the
software likewise cannot be accessed except through the
interfaces delivered with the application for staff access or
public access, or through a reports module.

Whether or not an application offers an API has little
to do with its completeness of functionality, sophistica-
tion, or scalability. While ILS products that target small
libraries tend to be more self-enclosed, some of the legacy
systems serving larger libraries might also fall into this
category. The point of distinction here involves the nature
of the application as entirely self-enclosed with no pro-
grammatic access to its internal data or functionality.

The extent to which a system offers APIs relates, to
a certain extent, to its vintage. Products designed more
than five years ago may not have originally incorporated
APIs in their design. As these products evolved, most have
come to include APIs that expose functionality through a
modern programming interface that may depend on inter-
nal proprietary programming.

Any major software application developed today
would be programmed in a way that would naturally
involve APIs. The prevailing preferred approach to soft-
ware development involves the service-oriented architec-
ture (SOA), which fundamentally embraces the concept of

APIs in the form of reusable services. These services imple-
ment small units of work that form the building blocks of
larger applications. The services may be used within the
application at hand or exposed externally. Although any
new automation system created today would surely be
service-oriented, most applications available in the library
arena predate the emergence of this approach and have to
be retrofitted with service layers or APIs.

The history of library automation is dominated by
products that have evolved through many different cycles
of software architectures; few systems built from scratch
with new architectures of the prevailing age have emerged
and survived. Equipping these evolved systems with APIs,
especially in the form of Web services, represents one
of the major factors in their forward progression. Those
that fail to adapt to this expectation may find themselves
less competitive as the library automation market moves
forward.

One of the first steps forward out of the purely propri-
etary programming arena was for developers to take a more
abstract approach to database access. Early automated sys-
tems managed data with proprietary methods. They stored,
indexed, and retrieved data in the most expedient and effi-
cient ways possible, usually involving database functions
created by the developer of the application. Since almost all
applications involve various aspects of data management,
the idea of continually creating this layer of functionality
within the application gave way to the use of third-party
database management systems. The use of a third-party
database management system allowed applications develop-
ers to focus more of their resources on creating higher-level
functionality and less on reinventing lower-level data-access
routines. The transition from database access routines writ-
ten for specific applications to third-party RDBMS prod-
ucts often introduced a higher level of system overhead
requiring more additional memory, disk storage, and pro-
cessing power. These RDBMS products offered much more
advanced functionality and scalability.

The use of a third-party RDBMS comes with cost
implications. Products such as Oracle require a separate
software license from the application software. When a
library implements an ILS that uses a commercial RDBMS
product, it must either purchase the level of license
required or take advantage of existing site license that its
organization may have acquired. The ILS vendor may also
bundle the RDBMS license into its cost package.

The use of proprietary databases continues to some
extent in library automation systems. Two of the major
ILS products, Millennium from Innovative Interfaces
and Symphony from SirsiDynix, were initially developed
using proprietary databases. In both cases, the company
offers its system with an option to use Oracle or another
major RDBMS. For libraries that do not require Oracle for
other reasons, many sites choose to use the proprietary
database. This option avoids additional licensing fees

Figure 1
proprietary programming without Api.

delivered
interfaces

Core
software

data
stores

Application Based on internal
proprietary programming

10

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
w

w
w

.a
la

te
ch

so
ur

ce
.o

rg

N
o

ve
m

b
er

/D
ec

em
b

er
 2

00
9

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

associated with Oracle. The proprietary databases can
often deliver faster performance since they avoid much of
the computing overhead associated with high-end data-
base platforms like Oracle.

The emergence of these third-party database man-
agement systems gave organizations a much more power-
ful way to deal with information across many different
applications. An organization could assemble a set of
applications for each of its business needs, each based on
the same underlying database management system. This
arrangement would allow the organization to perform
report generation, data mining, and other tasks that span
multiple software applications, even applications created
by different vendors. It also would allow the organization
to hire a single expert, or database administrator (DBA),
to manage data across many applications. A DBA will have
very specialized training in the database management plat-
form used throughout the organization and will optimize
database performance, develop data integrity and disaster
recovery procedures, and provide support to other pro-
grammers and system administrators in using, extracting,
and manipulating data across all the applications.

Figure 2 illustrates an application where database
access has been abstracted from its core business logic.
The separation of the lower-level RDBMS though an API
provides multiple advantages. To the extent that the appli-
cation itself consistently operates through the API and
avoids proprietary database-access methods, it becomes
possible to support different RDBMS platforms. The data-
base and the application can use standard connectivity
protocols such as ODBC (open database connectivity) or
JDBC (Java database connectivity) that allow program-
ming code to be written independent of specific database
products. Once one of these standard connectivity layers
is in place, programmers can access the underlying data
using SQL (structured query language), widely supported
across all major database platforms.

Database programming involves tradeoffs between
maintaining database independence and performance.
Each database offers its own APIs to take advantage
of features that boost performance and extend functional-
ity. But when an application programmer codes to these
vendor-specific extensions, the code becomes tied to a
single database product.

As with other product categories in the tech sec-
tor, the RDBMS arena has seen massive consolidation.
Many database products, such as Ingress, Sybase, Pick,
Interbase, dBase, and others, have fallen away, leaving
Oracle and Microsoft SQL Server as the primary database
platforms used by library software. IBM’s DB2 continues
to see much use in the larger business arena, but has not
been a major player in library software.

In the open source ILS arena, MySQL and PostgreSQL
find wide use. We should note that Sun Microsystems pur-
chased the open source MySQL product in January 2008,
and database giant Oracle acquired Sun in April 2009,
leaving the most widely deployed open source database
in the hands of a company primarily involved with propri-
etary software.

The abstraction of the database layer from the appli-
cations layer of the ILS provides a great opportunity for
a library to gain access to data in ways not limited by
the software provided by the vendor. As long as the soft-
ware vendor provides the customer library access to the
schema of the databases involved and minimal documen-
tation, the library should be able to, at a minimum, extract
data and create reports in any way needed. As shown in
Figure 3, it is possible to expose the database API out-
side of the application itself. It’s also possible to modify
and add records in a database though this method. These
tasks require much more care, expertise, and knowledge
of the software. An ILS is a very complex business sys-
tem, with many interconnections among data elements. If
the library modifies data in ways that interfere with any
of the higher-level software, major problems can ensue.
Software vendors may restrict these database operations
outside their own software that change the databases.

It’s also possible to have an abstract API with a pro-
prietary database. But in practical terms, APIs tend to be
used as tools for customer access to data primarily with
the major industry-standard database products.

A variety of products are available to help program-
mers and librarians make use of data held in a RDBMS.
Crystal Reports, for example, allows an organization to pro-
duce custom reports with many analytical features across
any of their business applications. This type of reporting
tool provides sophisticated access to data sets for those
with a lower threshold of programming expertise. For orga-
nizations with experienced database programmers, one can
write custom software to extract or analyze data.

While this approach provides the capability to access
the underlying data through the APIs or other data access

Figure 2
Application with RdBms Api.

Delivered
Interfaces

Core
Software

Data
Stores

Application with Abstract Database API

11

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

w
w

w
.alatechsource.org

N
o

vem
b

er/D
ecem

b
er 2009

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

routines associated with a RDBMS, it has limitations. It
provides access to the raw data, but does not interact with
the higher-level functionality of the automation product.

Offering APIs associated with the higher-level func-
tionality of the ILS itself provides much more powerful
capabilities. We’re familiar with all of the features of an
ILS offered through the staff and public interfaces. An
ILS embodies hundreds, if not thousands, of business pro-
cesses related to the operation of a library. The business
logic of an ILS includes transactions for charging, renew-
ing, or discharging materials; calculating circulation peri-
ods; loading records of all types; performing validation
routines; purchasing materials; and performing search
and presentation routines, to name just a few.

As software applications have evolved from monolithic
proprietary designs to structured layered architectures,
it has become common to use application programming
interfaces internally. Figure 4 illustrates an ILS where the
staff and public user interfaces as well as the reporting
module do not access the business logic of the application
through proprietary programming but only through the

services made available through an application program-
ming interface. This tiered approach has come into favor
in recent years and is consistent with the service-oriented
architecture. As applied internally within the application,
having a presentation layer interfaces operate through a
set of APIs to gain access to the underlying functionality
and business logic provides many advantages, including
the ability to rework user interfaces without having to
reprogram the entire application.

Although an internal layering of software reflects
good software design, it does not offer users of the soft-
ware a direct benefit unless the APIs are made available
to external applications in addition to their support for
the vendor-supplied interfaces. Figure 5 illustrates a
hypothetical system where the ILS follows a nicely lay-
ered design, with this important addition: the APIs that
provide access to all of the data and services of the appli-
cation have been published for use by the library. These
published APIs might be accessed through scripts created
by library programmers, through other applications that
reside on the library’s network, or through authorized
applications beyond the local network. We’ll explore some
of the specific tasks that might be enabled through these
APIs below.

Figure 6 describes a hybrid model, which corresponds
more closely to real-world ILS products. This approach
includes proprietary programming used internally within
the application, but also includes a set of APIs that
expose functionality to external resources. Applications
that evolved from a legacy of proprietary programming
may continue to use that code internally. Still, a subset of
functionality is made available through APIs.

What Is an API?

An application programming interface involves a set of
commands to which a piece of software will respond in a
predictable manner. APIs live in the realm of computer-to-

Figure 3
Customer access to database Api.

Delivered
Interfaces

Core
Software

Data
Stores

Application with Abstract Database API

Delivered
Interfaces

API
Abstraction

Layer

Core
Software

Data
Stores

Application with API Abstraction Layer

Figure 4
iLs with internal Api.

12

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
w

w
w

.a
la

te
ch

so
ur

ce
.o

rg

N
o

ve
m

b
er

/D
ec

em
b

er
 2

00
9

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

computer interactions. The word interface in this context
does not mean a user interface intended for humans, but
rather mechanisms for one computer program to make a
request from another.

APIs operate through requests and responses. The
request might be a simple data lookup, or it might be a
complex business transaction. In order for a programmer
to know how to use the API, its creator must make avail-
able detailed documentation that describes each request
supported, the syntax that must be followed, any man-
datory or optional qualifiers, and the exact form of the
expected response. Equipped with the full documenta-
tion of the API and its required transport mechanisms,
a programmer will be able to write scripts, configure an
external application, or perform other technical tasks that
make use of the API.

It’s also important to know what kind of communica-
tions protocols the API uses. Modern APIs will likely oper-

ate through a Web services model. Web
services take advantage of the infrastruc-
ture developed for the Web to support
computer-to-computer communications.
Services and requests will be expressed
in some flavor of XML and will use http
as the networking protocol to transport
the messages. Some environments use
a more complex messaging system such
as SOAP (simple object access protocol)
to deliver requests and responses; oth-
ers use the more simple REST (repre-
sentational state transfer) which issues
a request through a standard uniform
resource identifier (URI). Continue to
keep in mind that even when using Web
technologies, these APIs operate behind
the scenes. While one might be able to
test a Web service implemented through
REST, the actual use takes place between
software programs.

Any application that supports an API
will implement a responder that continu-
ally listens for requests, submits those
requests to the underlying software com-
ponents, and delivers the response.

Proprietary APIs

The concept of application programming
interfaces has been around for many
years, predating many of the modern con-
ventions for implementing them today. In
the ILS arena, we see examples of prod-
ucts that offer an API, but use a vendor-
specific command language rather than

the protocols and conventions more commonly used today,
such as Web services delivered through REST or SOAP.
These proprietary APIs provide many useful capabilities to
extract data and extend functionality, but may be limited
in their ability to support computer-to-computer interac-
tions. Fortunately, the systems offering proprietary APIs
(such as SirsiDynix Symphony) have also begun imple-
menting APIs through modern transport protocols.

APIs and Open Source

Open source software has attracted great interest in the
library automation sphere. At least two open source ILS
products have become major contenders in the market,
Evergreen and Koha. Open source software comes with
the ability to view, modify, and redistribute its source
code. This contrasts with proprietary software, where the

Figure 5
exposed Api services.

Delivered
Interfaces

API
Abstraction

Layer

Core
Software

Data
Stores

Application API Exposed to External Applications

Figure 6
mixed proprietary and Api model.

Delivered
Interfaces

Use Proprietary
Programming

Core
Software

Data
Stores

Application API Exposed to External Applications

13

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

w
w

w
.alatechsource.org

N
o

vem
b

er/D
ecem

b
er 2009

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

source code remains under the sole control of the organi-
zation that created it.

An open source ILS allows anyone to work directly
with the source code of the application to fix any prob-
lems encountered, enhance existing functionality, or add
new features. A key challenge to the maintenance of open
source software involves governance issues that coordi-
nate the work of a distributed group of programmers to
ensure system coherence, consistent coding practices,
and elimination of software bugs.

Open source ILS products benefit from customer-fac-
ing APIs as much as proprietary ones. Libraries using an
open source system should not have to be constrained by
the functionality of the delivered interfaces any more than
those relying on proprietary systems. Nor should they have
to become involved with advanced applications program-
ming involved in the core of the application in order to gain
access to data not addressed in the user interfaces.

Following an open source licensing model does not
necessarily mean that an ILS is inherently more interoper-
able than a proprietary system. An open source ILS that
does not offer support for standard industry protocols and
a robust set of APIs will not be more inherently able to
communicate with other library and nonlibrary infrastruc-
ture components than a proprietary system. Although an
open source ILS might enable the library to develop the
APIs needed for a given scenario that requires interac-
tions with another application, such a development effort
involves a much higher level of investment than being
able to take advantage of existing service layers.

For these reasons, the same questions regarding
the availability of APIs that apply to an open source ILS
apply to the proprietary products. Like the proprietary
versions, it may be the case that a given open source ILS
product finds use primarily in the types of libraries that
do not necessarily require this capability. As open source
ILS products reach into larger libraries and more complex
automation scenarios, their ability to offer this capability
will become more critical.

Standards as Open Interfaces

National and international standards play a vital role in
the way that libraries use their ILS. Most standards are
implemented as a particular kind of API. Their presence
in an ILS is a given; libraries must insist that any ILS they
acquire adhere to the full complement of standards that
apply to library automation. Any ILS should include sup-
port for standards such as

•	MARC21:	 formats	 for	 bibliographic,	 holdings,	 and	
authority records

•	Z39.50:	search	and	retrieval

•	SRU/SRW:	search	and	retrieval	of	Web	services

•	OAI-PMH:	open	archives	initiative	protocol	for	meta-
data harvesting

•	OpenURL:	context-sensitive	linking

•	SIP2	and	NCIP:	protocols	for	circulation	and	patron	
data

As a point of clarification, in this report we look beyond
the given standards as examples of API implementation.
Library standards do not address many aspects of the data
and functionality managed within an ILS. We’re interested
in APIs capable of accessing any aspect of the ILS.

API Security

It’s important to prevent APIs from compromising the
security of an application. The same level of control must
be enforced when performing tasks on the system through
an API as would be expected for an interface operated by
a human. An expected part of interacting with an API will
include authentication and authorization mechanisms.
Any access to the parts of the system involving personal
or financial data must be controlled through appropri-
ate security, including the use of encryption before it is
exposed to the network.

There may be some API requests that might be made
freely available without restrictions. Some portion of the
work handled by an API involves information that can be
made publicly available, particularly in the open source
ILS environment. Most libraries want the information in
their catalogs to be accessed by any interested party.

Another aspect of concern relates to regulating the
volume of requests that might be presented to the API
responders. In order to prevent the deterioration of per-
formance for the system’s primary users, it’s important to
have security routines that throttle incoming requests to
protect the system from misbehaved scripts or intentional
denial-of-service attacks.

Terms of Service

One of the most important characteristics of an API has
nothing to do with technology, but relates to its legal and
business conditions. Any use of an API must be done with
explicit permission. The terms of service specify details
like who may access the API, any costs associated with
its use, what they can do with any data they obtain, and
any limitations on the distribution of intellectual property
associated with the API or its underlying software.

A library using a proprietary ILS may need permis-
sion from the ILS vendor to enable the API. Some ILS
vendors require that the library pay a separate license fee
to make use of the API, some require that libraries using
the API undergo specific training, and some require both.

14

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
w

w
w

.a
la

te
ch

so
ur

ce
.o

rg

N
o

ve
m

b
er

/D
ec

em
b

er
 2

00
9

Opening Up Library Systems through Web Services and SOA: Hype, or Reality? Marshall Breeding

Vendors that assume a certain level of responsibility for
the performance of the system and the integrity of its
data may be reluctant to turn over access to an API that
gives the library the ability to work with the system in
ways that might lead to unintended consequences that
require major intervention. Some vendors justify an addi-
tional license fee for access to the API since it is a feature
used by only some customers that requires ongoing devel-
opment and support.

Another area of concern for vendors of proprietary
software involves revealing specific details to competitors.
The documentation of the API, and even programs that
make use of the API, may fall within the terms on non-
disclosure expressed in a software license. It’s common
for libraries within the community of users of a given
product to collaborate and share scripts that make use
of an API but to be restricted from sharing those scripts
more broadly.

Programming done with the API of a proprietary ILS
may also fall under terms of nondisclosure. While a com-
pany may be willing to provide its existing customers full
information regarding the internals of its system, it may
not want that information to be made available to noncus-
tomers or competitors.

Open source ILS products do not have restrictive
terms on any APIs associated with the system. Since the
software itself is available without license fees and the
source code is readily available, the issues relating to
license fees and redistribution of intellectual property do
not apply.

The second level of permission deals with how the
library controls access to its system through the API. It
might, for example, open up some API requests without
restriction. Catalog search requests, availability of items,
and other information that the library routinely makes
freely available on the Web through its traditional user
interfaces might fall into the kind of requests that would
likewise be unrestricted through the API. Requests
involving patron data or involving the financial records
of the acquisitions module, however, would need to be
controlled and limited to trusted business partners.

With Power Comes
Responsibility and Cost

Adding a layer of APIs to a system that gives a library
true access to the data and functionality of the ILS gives
the library a great deal of power to work with its system.
This power can be a mixed blessing. Once a library has
the ability to read, and especially to write, into the data
structures that underlie the ILS, extreme care has to be
taken not to interfere with the normal operations of the
system or to accidentally corrupt data.

The use of customer-created programming has impli-
cations for the support provided for the system by a
vendor. If support agreements involve service-level agree-
ments that guarantee high availability and expected time
frames to respond and resolve problems, some caveats
may have to be made when the customer has the ability
to change data in the system in ways beyond the software
delivered by the vendor.

The creation of an API introduces costs for its
development, testing, and documentation and for sup-
port issues. It’s common for vendors to offer training
programs, custom programming, or consulting services
related to customer use of these APIs. Like any other sys-
tem component, once a vendor creates a set of APIs, the
vendor must maintain it through each new release and
attend to ongoing bugs and security issues. Since the cre-
ation and maintenance of APIs add cost and complexity to
the system, vendors take different approaches to manag-
ing those costs. For some ILSs, especially those designed
for large, complex libraries, the API may be considered
expected functionality, and its cost may be folded into
licensing or support fees. Other vendors take a more a la
carte approach to API availability and support. Especially
when only a minority of libraries make use of the API,
a company may choose to charge a separate license and
support fees for that feature.

Some ILS products may opt not to provide an API in
order to offer low-cost products that can be more easily
supported. APIs fall into a much lower priority level than
affordable systems that can be used as delivered, particu-
larly in the small to mid-sized library arena. For ILS prod-
ucts targeting this segment of the market, an API may not
be an essential feature.

No Universal Expectation
for APIs

The vast majority of libraries may have no expectation to
work with their ILS through an API. Rather, they expect
the system to provide for them a complete package of the
functionality that they require to automate their work.
Most libraries do not have the technical staff that would
be needed to produce local extensions to the software
using the API.

A reasonable degree of openness can be accomplished
in other ways. An ILS with a full set of customization fea-
tures should allow the library to adapt the software to
its local preferences. All operational policies will be set;
the presentation of online catalog should be malleable
enough to adapt to the color schemes, logos, and other
visual requirements held by the library.

