
22

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Abstract

Chapter 4 of Library Technology Reports (vol. 49, no.
8), “Streamlining Information Services Using Chatbots,”
covers additional AIML tags. The goal is to make a chatbot
more lifelike, allowing more intelligent responses to users
and enriching conversations.

The previous chapters have provided the tools to
create simple questions and answers using AIML.
Let’s now look at some ways to create a more

complex and natural conversation flow.

Singleton Tags and Chatbot
Properties

As you’ve seen in the examples from the preceding
chapters, most AIML tags appear in pairs. The tags are
delimited by the less than < and greater than > char-
acters, and in each tag pair, the closing tag is exactly
the same as the opening tag except for the addition of
a slash / character after the first <. We have already
encountered one exception to this pattern in the
<star/> tag, which is used to repeat the value of an
asterisk wildcard in a template response.

Additional examples of singleton tags are used to
assign various attributes to the bot when creating its
properties, and appear in the bot.aiml file. An exam-
ple would be <bot name="age"/>. The values (or
attributes) accessed by this file are set using the Prop-
erties table in the Pandorabots interface, where they
are given specific content for later reference. Creating
values for these properties allows you to begin to build
the “personality” of your chatbot.

More Complex Matching

<that>

In creating a more natural question-and-answer flow,
you may wish to have the bot recall and refer to the
last response the user has given. Using the <that> tag
allows this to happen. This tag retains the last tem-
plate response as the “subject” of the next pattern,
allowing you to create a two-step question-and-answer
pattern. You can think of it as <that> being used to
modify the value of the subsequent pattern, allowing
the pattern to match only if the value of <that> was
the bot’s last response.

For example, the user may ask about a particular
item or service, let’s say Storytime. Since the availabil-
ity and location of this service differs depending on
the branch library in question, the bot will ask where
the user would like to attend Storytime. When the
user replies with a branch name, the bot can provide
the appropriate information about Storytime at that
branch.

<category>
<pattern>Where is Storytime

</pattern>
<template>At which branch do you

wish to attend Storytime?
</template>

</category>
<category>
<pattern>Main Library</pattern>
<that>At which branch do you wish

to attend Storytime?</that>

<template>Storytime at Main
Library is held in the

Creating a More Natural
Conversation

Chapter 4

23

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Children's Room.</template>
</category>
<category>
<pattern>West Branch</pattern>
<that>At which branch do you wish

to attend Storytime?</that>
<template>Storytime at West Branch

Library is held in the alcove
by the bay window.</template>

<category>

Here the user will receive the correct information
about the branch where he or she wishes to attend
the program, but the above patterns “Main Library”
and “West Branch” will generate the assigned response
only if they follow the question “At which branch do
you wish to attend Storytime?” So a user who sim-
ply enters the branch name to find other information
about the branch won’t get the “Storytime” response.

<set> and <get>

The <set> tag is used to save an input value for later
use or reference. The <get> tag is used to retrieve the
saved value. This can also be useful in preparing or
collecting information for later processing (as for pass-
ing to another database).

Let’s look at the <set> tag first. In its simplest
form, a <set> can appear alone when used to assign
a value or characteristic to the bot itself. This is simi-
lar to the bot properties settings. An example would
be gender. The following singleton tag sets the bot’s
gender to male.

<set_male/>

However, the <set> tag is more frequently used
to assign a value to a specific variable or term. For
example:

• <set_it>horse</set_it>—assigns the value
“horse” to the variable it.

• <set_location>West Branch</set_location>
—assigns the value “West Branch” to the variable
location.

• <set_name>Emma</set_name>—assigns
“Emma” as the name of the client.

• <set_xxx>X</set_xxx>—creates a variable
xxx and assigns the value “X” to it.

Additionally, <set name="x"></set> can be
used to extend AIML by creating custom tags for for-
eign language pronouns or predicates. In this way,
an infinite variety of variables and values can be
incorporated.

Let’s now turn to the <get> tag. This tag can also
appear alone rather than in a pair, though it usually

appears with a matching <set> tag. On those occa-
sions where <get> appears without a <set> tag, it
is accessing one of a set of predetermined property
values set outside of the AIML code or process. These
values are referred to as “Read Only.” Table 4.1 lists
Read Only <get> tags.

It is more usual, however, for the <get> tag to
refer to a value assigned by a <set> tag in the same
or another AIML file. These values usually are associ-
ated with a particular user and can only appear in the
<template> of a category. Here are some of the stan-
dard <get> tags of this kind:

<get_name/> user's name
<get_topic/> a previously assigned

topic of conversation
<get_it/> the value assigned to "it"
<get_location/> the user's

geographic location

Now let’s look at an example of a <set> <get>
combination. Here the user is asked for a branch
name; this name is then used when answering the

<bot_name/> bot name

<bot_location/> bot location

<bot_gender/> bot gender

<bot_birthday/> bot birthday

<bot_master/> bot botmaster name

<bot_birthplace/> bot birthplace

<bot_boyfriend/> the bot’s boyfriend?

<bot_favoritefood/> bot favorite food

<bot_favoritemovie/> bot favorite movie

<bot_favoriteband/> bot favorite band

<bot_favoritebook/> bot favorite book

<bot_favoritecolor/> bot favorite color

<bot_favoritesong/> bot favorite song

<for_fun/> what the bot does for fun

<bot_friends/> the bot’s friends

<bot_girlfriend/> the bot’s girlfriend?

<bot_wear/> what does the bot wear

<bot_sign/> bot’s astrological sign

<bot_looklike/> what does the bot look like

<bot_music/> bot’s music preference

<bot_talkabout/> bot’s favorite subjects for
discussion

<getsize/> bot memory size

<getversion/> program version

Table 4.1
Read only tags.

24

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

user’s question about hours.

<category>
<pattern>my branch is *</pattern>
<template>
<set name="branch"><star/></set>

I'll remember your branch is
<star/>.

</template>
</category>

<category>
<pattern>What are your hours

</pattern>
<template>
Hours for the <get name="branch"/>:

Monday through Friday 9 A.M. to
5 P.M.

</template>
</category>

<topic>

The <topic> tag expands upon the functionality
of the <set> <get> pair by collecting together a
group of categories to which a single topic value can
be assigned. <topic> tags appear in pairs surround-
ing a set of categories that all refer to that topic. If a
topic value is matched in a user input, those categories
associated with it are searched first for pertinent pat-
tern matches. Thus, the use of <topic> tags allows
different responses to a single pattern depending on
the topic in which it appears. This provides a more
natural flow of conversation as well as allowing more
specificity in template responses. Here is an example.
The following conversation offers differing responses
to the same questions depending on the user’s original
input (or lack thereof):

<category>
<pattern>I like to *</pattern>
<template>Yes, <set name="topic">

<star index="1" />
</set> is fun. Let's talk about
it?

</template>
</category>

<topic name="read">
<category>
<pattern>where do you like to

<get_topic/> </pattern>
<template>I like to read curled up

on my counch.</template>
</category>
<category>
<pattern>what do you need to

<get_topic/> </pattern>
<template>Just my glasses and a

good book.</template>
</category>
</topic>

<topic name="sing">
<category>
<template>I'm happy to sing

anywhere. But, for the sake of
others, I try to limit myself
to the shower and my car.
</template>

</category>
<category>
<pattern>what do you need

</pattern>
<template>I either turn the stereo

up to help drown out my sour
notes. Or I make sure anyone
else in the house has earplugs.
</template>

</category>
</topic>

<category>
<pattern>where do you like to

<get_topic/> </pattern>
<template>Where do I like to go to

do.. What?</template>
</category>
<category>
<pattern>what do you need

<get_topic/> </pattern>
<template>I really cannot answer

that question without more
info. What do you like to do?
</template>

</category>

The above example is very simple, but the value is
easily seen if you have branches with differing hours of
service, material types with different loan periods, etc.

Above you can also see an example of the use of
the <get_topic/> tag. You can use this tag to incor-
porate the assigned value of <topic> into your tem-
plate responses.

The <topic> tag can also be set inside a template
to direct further conversation to the stated topic, as in
this example:

<category>
<pattern>I want to go to *

</pattern>
<template>Can I provide you with

any additional information
about that branch? <topic

25

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

name="West Branch"></template>
</category>

Here, subsequent conversations will revolve
around West Branch until the topic is reset.

<person>

The <person> tag provides a pronoun-swapping func-
tion that allows the bot to make sensible responses to
a variety of statements. The <person> tag is a single-
ton shorthand for the sequence <person/><star/>
</person>. The most common use of the tag is to
operate on a <star/> variable string to replace
included pronouns. In the following example the user
states:

The branch is too far from me.

The bot responds:

I understand the branch is too far from you.
What could we do to help?

<category>
<pattern>the branch * </pattern>
<topic> I understand the branch

<person/>. What could we do to
help?

</category>

Similar issues could be addressed with the same code:

User: The branch is too cold for me.
Bot: I understand the branch is too cold for
you. What could we do to help?

User: The branch is confusing to me.
Bot: I understand the branch is confusing to
you. What could we do to help?

<think>

Use of the <think> </think> tag pair allows the
inclusion of scripting that you don’t wish to be dis-
played (or read) to the user. It can be used to retain
a topic for multiple questions or information that is
being used to narrow the scope of a particular question.

However, possibly the most important use of the
<think> tag in basic-level chatbots is to pass queries
to other databases or information resources. This pro-
cess requires a combination of JavaScript coding in the
HTML frame within which the bot’s data input field
appears and AIML coding within the specific category.

Let’s look at a fairly simple example. First, here’s
the AIML coding to pass a search from the bot to the
Ohio Web Library (which hosts a number of magazine
and journal indices). The <think> tags are used to hide
the process of passing the search and searcharg
values to the JavaScript code in the HTML frame. Basi-
cally, what happens here is that if a user asks for an
article on a topic, the AIML code responds with the
text about passing the search to Ohio Web Library
while saving the value of the wildcard * as <star/>

Figure 4.1
pandorabots Training screen.

26

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

and assigning the value ohweblib to search. We have
used the term search to identify the location where
the search is to be conducted and, in some cases, the
type of search to be completed (keyword, author, title,
audiovisual materials only, etc.)

<category>
<pattern>ARTICLE ON *</pattern>
<template>
I'm opening a link to The Ohio

Web Library which contains a
variety of magazine and journal
articles to help you. If you
don’t see the results, please
turn off your pop-up blocker.

<think>
<set name="searcharg"><star/>

</set>
<set name="search">ohweblib</set>
</think>
</template>
</category>

Here’s the HTML code that follows the query
input form and receives the values from the category
above. When an input is processed, the template con-
tained within the HTML file is processed along with
that included in the AIML file. This template checks to
see if a search value has been identified in the AIML

code. If such a value exists, the template contains
JavaScript that opens a new window containing the
results of a search done on the appropriate website,
using the value of searcharg as the search term.
The specific search conditions are followed by <set
name="search">nosearch</set> to return the
bot to a “nonsearching” mode for future queries.

<template>
<condition name="search"

value="ohweblib">
<script language="JavaScript">var

myWindow =window.open('http://
ohioweblibrary.org/?q=<get nam
e="searcharg"/>&defaultcat
=All');

</script>
</condition>
<set name="search">nosearch</set>
</template>

More complete instructions for creating code to pass
searches to other resources are contained in chapter 5.

The Ultimate Default Category

Obviously there will always be some questions for
which you have not programmed a response. For these
questions, it is useful to create a simple category to
respond to users with either a request for additional

Figure 4.2
pandorabots Log interface with links to the Training interface.

27

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

information or an explanation that the information
they are seeking isn’t yet part of the bot’s knowledge
base. Below are examples of both types of “ultimate
default categories.”

<category>
<pattern>*</pattern>
<template>
I need more information to help

you. Are you looking for
something to check out or do
you have a question about this
topic?</template>

</category>
<category>
<pattern>*</pattern>
<template>
<random>
I'm sorry. I don't recognize

your question. Please ask
one of our human staff for
assistance.

I'm sorry. I don't have a
response to that. Check back in
a few days and I may.

I don't have an answer for
that right now. Tell me again
what you're looking for.

</random>
</template>
</category>

Adding Knowledge

There are a number of ways to add information to the
AIML coded bot.

The simplest is provided by the Training mode
of the Pandorabots interface. Here you are presented
with a question form similar to what you have on your
bot’s own interface. However, when you pose a ques-
tion here, you are provided not only with the answer
identified by the current version of your AIML, but
also with the category your query matched and the
specific AIML file that contains that category. From
here you can simply provide a new response, which
the Pandorabots interface will include in the updates.
aiml file. Another option is to edit the existing AIML.
Figure 4.1 displays the Pandorabots Training screen.

In addition, Pandorabots offers an easy way to
review recent bot conversations in its Log interface.
Here you can view entire conversations, noting where
a specific question could be answered more completely
or correctly. This interface also offers a quick link to
the Training interface beside each question (see figure
4.2.).

Finally, when adding an entirely new theme or
subject to your bot’s knowledge base, you will prob-
ably want to start fresh with a new AIML file. Creating
separate files for diverse subjects and functions will
allow you to keep track of your code and easily iden-
tify which files need updating.

