
11

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

Abstract

Chapter 2 of Library Technology Reports (vol. 49, no.
8), “Streamlining Information Services Using Chatbots,”
introduces AIML and ChatScript, the two most viable lan-
guages for creating a chatbot. While their basic structure
and syntax are markedly different, either may be used
effectively, and both offer their own advantages.

There are a number of coding options available
to use in creating your own bot. The markup or
scripting language you choose will depend on

your skill and experience, the amount of time you have
available, and the functionality you’re trying to create.
At present, the best choices are AIML (Program Z or
Program O) and ChatScript. We’ll examine each in turn.

AIML (Artificial Intelligence Markup
Language)

AIML is the starting place for many who are interested
in chatbots or natural language processing. AIML was
created in 1995 by Dr. Richard Wallace and is the
basis for numerous chatbots, including the original
Emma the Catbot, the University of Nebraska’s Pixel,
Adeena Mignona’s Zoe, and Steve Worswick’s Mitsuku.

AIML’s great virtue is its simplicity; it’s easy to
learn and to implement. AIML is an XML dialect, so if
you’re familiar with XML or HTML, you’ll be able to
learn AIML quickly. You can write AIML using Note-
pad, WordPad, or a spreadsheet-style AIML editor
like Simple AIML Editor from RIOT Software. AIML is
based on pattern matching. Essentially, the data mak-
ing up an AIML bot’s “brain” take the form of a very
large decision tree. User input is first preprocessed

and then matched in order against the nodes of the
tree. When input finds a match, the bot will execute
an action, such as responding or opening a web page.

Simple AIML Editor
http://riotsw.com/sae.html

AIML does have some drawbacks, however. AIML’s
pattern matching is relatively weak, which means the
content you create has the potential to match a range
of input and return incorrect or meaningless responses.
While authoring content is easy, a large amount of con-
tent is needed to create a convincing bot, somewhere
in the range of 60,000+ categories. Each question or
concept in the bot’s knowledge base requires multiple
categories to match permutations of the question and
to ensure a correct response. For instance, there are
many ways to ask, “What time does the library open?”:

“When do you open?”
“When are you opening today?”
“What time do you open?”
“Will you be open today?”

You can easily add to this list.
A category is required to match each variation:

<Code Sample>
<category>
<pattern>WHAT TIME DOES THE

LIBRARY OPEN</pattern>
<template><srai>HOURS</srai>

</template>
</category>

Chatbot Creation Options

Chapter 2

12

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

<category>
<pattern>WHEN DO YOU OPEN

</pattern>
<template><srai>HOURS</srai>

</template>
</category>

<category>
<pattern>WHEN ARE YOU OPENING

TODAY</pattern>
<template><srai>HOURS</srai>

</template>
</category>

<category>
<pattern>WHAT TIME DO YOU OPEN

</pattern>
<template><srai>HOURS</srai>

</template>
</category>

<category>
<pattern>WILL YOU BE OPEN TODAY

</pattern>
<template><srai>HOURS</srai>

</template>
</category>
<End Code Sample>

In order to understand how an input will match
or fail, you need to be familiar with all of the catego-
ries dealing with each question or concept in the bot’s
knowledge base. One cannot look at an individual
AIML category and know what input it will match.
Writing code to distinguish between fine shades of
meaning can be tricky, and the time required to
maintain and debug an AIML knowledge base can be
considerable. Before you become too discouraged,
keep in mind that AIML has been used to create suc-
cessful library bots. There are ways to reduce devel-
opment and maintenance time, such as by modifying
an existing AIML set, infoTabby or A.L.I.C.E., and by
writing your code to be as efficient as possible. We’ll
cover the details of writing efficient AIML in chapters
3 and 4.

Over the years, a variety of AIML interpreters,
or engines, have emerged using Java, Ruby, Python,
C++, C#, Pascal, and others. For our purposes, the
two best choices for creating a library bot are AIML
Program Z and AIML Program O.

AIML Program Z

AIML Program Z is the proprietary language of
Pandorabots, one of the oldest and largest chatbot
hosting services in the world. As of February 2012,

Pandorabots’ free service was home to more than
166,000 botmasters and 201,000 AIML chatbots.1 If
you would like to start with AIML and would like
to avoid the technical issues involved with setting
up your own chatbot server, Pandorabots is a fine
choice. Free and paid hosting are both available. The
free server is a good place to start and experiment.
The paid server has great reliability. Either will make
setting up your bot and adding it to a web page easy.
The Pandorabots site has excellent documentation
and support, including an extensive series of YouTube
tutorials covering AIML basics, AIML predicates,
ReversedAIML, adding SitePal avatars, AIML target-
ing, bot properties, and other topics. Pandorabots’
excellent account interface gives access to conversa-
tion logs, including a time stamp and the user’s IP
address, the bot’s AIML set, a training interface, Pan-
dorawriter (which converts dialogue into AIML), and
the HTML files used to embed the bot into web pages
(see figure 2.1). Editing the AIML set, uploading or
downloading files, and reviewing conversations are
all made quite easy.

Pandorabots
www.pandorabots.com

You can create multiple bots, so it’s possible to
stage or test your changes before making them live
to the public. You can start with no AIML content
or choose among several pre-authored AIML sets:
Standard AIML (2001), A.L.I.C.E. (2002), Annotated
A.L.I.C.E. AIML (2003), Christian Drossmann’s stand-
alone German AIML, or Sandro Pons’s Italian AIML
set. Pandorabots works closely with SitePal, so adding
avatars and text-to-speech is simple if you wish to give
your bot a face and voice.

In April 2012, Pandorabots released CallMom,
a mobile, voice-activated virtual assistant app for
Android that can be configured to use any existing
Pandorabot. You can download CallMom through
Google Play at no charge. CallMom is open source and
supports a number of additional AIML tags. We will
discuss CallMom and mobile apps in a later chapter.

CallMom on Google Play
https://play.google.com/store/apps/details?id=com.
pandorabots.callmom

Because of AIML’s simplicity, the small financial
investment needed to implement it, and the availabil-
ity of the free hosting provided by Pandorabots, we
will be using AIML Program Z for the examples in later
chapters of this report.

13

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

AIML Program O

Program O is an open-source, web-based application
written in PHP using a MySQL database. You can
access and download Program O from the Program O
website. Older versions of Program O lacked some of
the functionality of Program Z, but this gap has been
greatly reduced with the release of version 2.0. Pro-
gram O has the same advantages and disadvantages as
program Z; you will have to set up the engine on your
own server and will need to have PHP and MySQL run-
ning on that server. A good knowledge of PHP and
MySQL is helpful, but not entirely necessary. As you
will be installing Program O on your own webspace,
it is more complicated than using Pandorabots, but
can offer greater flexibility for experienced webmas-
ters. The University of Nebraska’s Pixel is an excellent
example of a library bot written in Program O; Morti
is another well-written Program O chatbot.

Program O website
http://blog.program-o.com

Pixel
http://pixel.unl.edu

Morti
www.geekcavecreations.com/Morti

The Program O website contains demos, down-
loads, an installation guide, and support, including a
FAQs page, forum, and contact information.

Program AB/AIML 2.0

Program AB is a compiler supporting AIML 2.0 and
is written in Java. AIML 2.0 was released in January
2013 by the ALICE A.I. Foundation2 and represents an
attempt to address some of the limitations of earlier
AIML versions while maintaining the simplicity of the
language. Some of the new features are

• Wildcards that match 0 or more words
• Highest priority matching to assign top match-

ing priority to selected words
• AIML sets to match input with sets of words

and phrases (similar to ChatScript concepts, see
below)

• AIML Maps to map set elements to members of
other sets

• looping
• local variables

It is also possible to define and use custom tags.
The full AIML 2.0 working draft and specifications are
available online. At this time, implementation of AIML
2.0 is limited to Program AB and the CallMom Basic
app. A new Pandorabots server that will support all

Figure 2.1
An example of some of the documentation and support offered by pandorabots. Copyright 2013 pandorabots. portions re-
produced with permission.

14

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

the features of AIML 2.0 is under construction.

AIML 2.0 Working Draft
https://docs.google.com/document/d/1wNT25hJRyupc
G51aO89UcQEiG-HkXRXusukADpFnDs4/pub

AIML Summary

AIML Pros

• Simple
• Easy to learn
• Easy to implement
• Pre-authored AIML sets are available (including

the infoTabby AIML set designed for public and
academic library use). For more information and
to download the AIML sets visit the infoTabby
website.

infoTabby
www.infoTabby.org

AIML Cons

• Relatively weak pattern matching
• Can be time-consuming and difficult to maintain
• A large number of categories are needed to create

a robust bot.
• While AIML 2.0 addresses these issues, options for

implementation are currently limited but growing.

ChatScript

ChatScript is a scripting language/chatbot engine
developed by Bruce Wilcox and released as open
source in 2010. In only a few years it has been very
successful. Bruce’s bot “Suzette” won the 2009 Chat-
terbot Challenge as “best new bot,” and went on to
win the 2010 Loebner prize. Bruce’s bot “Rosette” won
the 2011 Loebner prize, and “Angela” placed second in
2012. ChatScript has been used commercially in ESL
bots by SpeakGlobal (Japan) and as the AI component
of the popular “Angela loves Tom” app by Outfit7.3

You can download ChatScript from SourceForge.
The zip file contains the ChatScript engine and excel-
lent documentation, including a user manual and
tutorial.

Figure 2.2
The program o download page. Copyright 2013 elizabeth perreau and The program o project. Used with permission.

15

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

ChatScript download on SourceForge
http://sourceforge.net/projects/chatscript

ChatScript is powerful and efficient and has much
stronger pattern matching than AIML. To give you an
idea of ChatScript’s power, one of the AIML files in the
original infoTabby set contains seventy-two categories
covering over six hundred lines of code. This file has
been recreated in a single ChatScript topic with seven-
teen lines of code. ChatScript is organized into rules,
which are gathered under topics. Unlike AIML, which
finds the best pattern match for an input, ChatScript
first finds the best topic match, then executes a rule
contained in that topic. This might sound a bit con-
fusing, but it really isn’t. Let’s take a brief look at a
ChatScript topic and follow how it matches input. For
instance, a library bot should be able to answer ques-
tions about e-books. Here’s how we can start to pro-
gram this in ChatScript:

concept: ~ebook NOUN_
SINGULAR(ebook epub kindle_book
nook_book Overdrive)

topic: ~policies_ebook keep repeat
(~ebook)

t: We have many eBooks for you
to download and enjoy. Follow
this link for more information:
http://www.ourlibrary.org/
overdrive.html

u: (need * card * checkout) You
need to have a library card to
check out eBooks. Do you have a
card?

a: (~yes) Great! Follow this link
to our eBooks: http://www.our
library.org/overdrive.html

a: (~no) I can help you get a card
online right now. Just follow
this link and complete the
form: http://www.ourlibrary.
org/selfreg.htm

u: (~renew * ~ebook) I’m sorry,
eBooks may not be renewed.

u: (~help * ~ebook) Here’s our
eBook help page: http://www.
ourlibrary/ebookFAQ.html

u: (~ebook) gambit(~)

Some users are concise and might enter a single
word only, for instance e-books. This input would
match the topic, and the bot would respond with the

line beginning with t: (the “gambit”).

t: We have many eBooks for you
to download and enjoy. Follow
this link for more information:
http://www.ourlibrary.org/
overdrive.html

This line would also match user input such as

• Do you have e-books?
• Can I get Nook books from you?
• I’m looking for epub books.

If our user asks, “Do I need a card to check out an
e-book?” the input would first match the topic, then
trigger the rule:

u: (need * card * checkout) You
need to have a library card to
check out eBooks. Do you have a
card?

a: (~yes) Great! Follow this link
to our eBooks: http://www.
ourlibrary.org/overdrive.html

a: (~no) I can help you get a card
online right now. Just follow
this link and complete the
form: http://www.ourlibrary.
org/selfreg.htm

a: (*) If you’re not sure, it
would be best for you to speak
with one of our human staff.
Please call them during regular
business hours at 555-555-1234.

Note that the bot answers the user’s question, then
gives further assistance by asking if the user has a card.
Appropriate responses are then given by the bot based
on the user’s response. Let’s look at a few more features.

Concepts

ChatScript comes preloaded with a large database
of concepts; you can create additional concepts eas-
ily. Concepts are sets of synonyms. Once a concept
has been created, it will match user input containing
words within the concept. In the preceding example
there is a concept for e-books:

concept: ~ebook NOUN_
SINGULAR(ebook epub kindle_book
nook_book Overdrive)

16

Li
b

ra
ry

 T
ec

h
n

o
lo

g
y

R
ep

o
rt

s
al

at
ec

hs
ou

rc
e.

or
g

N
o

ve
m

b
er

/D
ec

em
b

er
 2

01
3

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

This concept will match user input with any of
the words ebook, epub, kindle-book, nook-book, Over-
drive and will also match their plural forms. In AIML
it would be necessary to write categories for each of
these words. In ChatScript, we can create a single con-
cept to cover all of them. Concepts can also be nested
within other concepts, as in this example:

concept: ~downloadable (~ebook
~Freegal ~audiobook ~podcast)

Canonical Forms

ChatScript can match both the original and canonical
forms of a word if you use the canonical form in a pat-
tern. For example, if you use the word book in a pat-
tern, ChatScript will match either book or books in the
user’s input. Plural nouns canonize to their singular
form, verbs canonize to their infinitive forms. Adjec-
tives and adverbs canonize to their base forms.

WordNet Ontologies

WordNet is a lexical database of the English language
created and maintained at the Cognitive Science Lab-
oratory of Princeton University. It groups words into
sets of synonyms—synsets—each expressing a distinct
concept. WordNet gives short, general definitions and
records the semantic relations between synsets. You
can use WordNet ontologies in ChatScript by nam-
ing the word and meaning you want. This makes dis-
tinguishing between finer shades of meaning much
easier.

WordNet
http://wordnet.princeton.edu

Wildcards

ChatScript uses an assortment of wildcards. The unre-
stricted wildcard * will match zero or more words. You
can also specify a ranged wildcard. *~3 will match
zero to three words. You can also set a specific length
wildcard—*1, *2, etc.—which will match only that
number of words. It’s even possible to set backward
wildcards—*-2, *-3—which will match only that num-
ber of words before the wildcard position.

Variables

ChatScript lets you use an assortment of variables,
match variables, user variables, and system variables.
Match variables will temporarily retain input, as in
this example:

s: (my name is _*) Nice to meet
you, '_0.

If the input is My name is Kristina, the output would
be Nice to meet you, Kristina. User variables are pre-
ceded by the dollar sign: $username. Match variables
can be retained as user variables:

s: (my name is _*)
$username='_0
Nice to meet you, $username.

User variables will last indefinitely or until they are
assigned a new value. System variables are predefined
and start with %. One does not normally assign values
to system variables. One example of their use:

?: (what * date) Today is %day,
%monthname %date.

Facts and Tables

One of the most powerful features of ChatScript is the
ability to create facts—subject, verb, object triples—
and to organize them into tables. The data saved as
facts and in tables may then be recalled using queries.
For example, you can organize your fine information
into a table:

table: ~fine_rates (^item
^dailyfine)

^createfact(^item finerate
^dailyfine)

DATA:
book $0.10
cd $0.10
dvd $0.50
magazine $0.10
videogame $0.50
ipad $5.00
kindle $5.00
nook $5.00

Rates for each kind of item may be recalled by using
a query.

Implementation

Since ChatScript is both a scripting language and an
engine, implementation can be somewhat more dif-
ficult than AIML, depending on your intended use.
There are currently no hosting services available for
ChatScript, although this may change in the near
future. ChatScript is well suited for stand-alone appli-
cations, such as information kiosks or desktop help
icons, or as the intelligent component of apps. In fact,

17

Lib
rary Tech

n
o

lo
g

y R
ep

o
rts

alatechsource.org
N

o
vem

b
er/D

ecem
b

er 2013

Streamlining Information Services Using Chatbots Michele L. McNeal and David Newyear

ChatScript’s ability to run without an external server is
a decided advantage in these cases. Dave Morton has
several ChatScript GUIs available to download on his
website, Geek Cave Creations.

Geek Cave Creations
www.geekcavecreations.com

ChatScript Summary

ChatScript Pros

• Strong pattern matching
• Powerful, flexible, and efficient
• Excellent documentation and support available
• Proven performance in commercial use
• Best choice for certain applications as it may be

used without an external server

ChatScript Cons

• More difficult to learn than AIML
• Programming experience helpful, but not necessary
• There are no hosting services analogous to SitePal,

so while it is possible to create a bot with an ava-
tar and text-to-speech capability, you will have to
do it yourself

• More difficult to embed in a web page

Notes
1. “Welcome to Pandorabots,” accessed October 2,

2013, www.pandorabots.com/botmaster/en/home.
2. “Program AB,” Google Code website, accessed

September 12, 2013, https://code.google.com/p/
program-ab.

3. “ChatScript,” SourceForge website, accessed October
2, 2013, http://sourceforge.net/projects/chatscript.

